Calcul des paramètres de Thiele et Small d'un Haut-Parleur avec LIMP

Jean Fourcade <audio@volucres.fr>

 $12~\mathrm{mars}~2017$

Table des matières

1	Introduction	3
2	Materiel	3
3	Mesures préliminaires	5
4	Branchements	6
5	Configuration logicielle	7
	5.1 Menu : setup/measurement	$\overline{7}$
	5.2 Menu : setup/audio devices	8
	5.3 Menu : setup/generator	9
	5.4 Menu : record/calibrate	10
6	Mesure de l'impédance	10
7	Calcul du V_{as}	13
8	Correction des paramètres	16
	8.1 Précisions des mesures	18
	8.2 Mesures de haut-parleurs à chambre de compression	19
	8.3 Fichiers de mesures	20

1 Introduction

Cette note décrit la procédure de mesure de l'impédance d'un haut-parleur avec le module LIMP de la suite logicielle ARTA [1] afin d'en déduire les paramètres de Thiele et Small.

2 Materiel

Pour utiliser le logiciel LIMP il faut disposer des éléments suivants :

- un ordinateur de type PC;
- une interface audio digitale;
- un dispositif de mesure appelé "Arta Box";
- un amplificateur de fréquence de coupure basse inférieure à 5 hz.

J'ai utilisé l'interface audio TASCAM US-144 MK II [2] qui permet de traiter 4 canaux (deux analogiques et deux numériques) et fonctionne jusqu'à une fréquence d'échantillonnage de 96 kHz et une quantification de 24 bits.

FIGURE 1 – Schéma de l'Arta Box

La mesure de l'impédance avec le logiciel LIMP est réalisée avec un générateur de tension fixe et un pont diviseur. Pour minimiser l'effet du bruit de mesure, il est nécessaire d'utiliser une faible résistance de pont (environ 25 Ω) et un niveau de tension élevé (environ 1V). Le courant qui en résulte est supérieur à ce que peut délivrer la sortie d'une interface audio seule et nécessite donc d'utiliser un amplificateur de puissance.

Le schéma du dispositif de mesure est donné figure 1.

Ce dispositif comprend la résistance du pont de mesure, le circuit d'atténuation (environ 20 dB), le circuit de protection des entrées de l'interface audio (diodes Zener), le sélecteur pour passer du mode calibration au mode mesure et les différents connecteurs pour l'amplificateur, le haut-parleur et l'interface audio.

La photo de la figure 2 donne un aperçu de la mise en boitier.

FIGURE 2 – Arta Box

La résistance du pont est obtenue par la mise en parallèle de cinq résistances 130 Ω 2 W. On calcule la résistance équivalente à partir de la mesure de chaque résistance. Ce procédé permet une meilleure estimation de la résistance équivalente.

J'ai obtenu les mesures suivantes :

R1	R2	R3	R4	R5
130.4	129.0	128.8	129.0	129.2

La mise en parallèle conduit à une résistance de valeur : $R_{cal} = 25.855 \ \Omega$.

Le schema d'implémentation des composants est donné figure 3. Le fichier $\langle Cuivre.pdf \rangle$ constitue le typon du circuit de l'Arta Box. Les résistances R1, R2, R3 et R4 sont des résistances 1/4W de précision 1%. On utilisera des prises RCA pour les connections vers l'interface audio et des bornes à vis pour la connection vers l'amplificateur et le haut-parleur.

3 Mesures préliminaires

Il faut dans un premier temps mesurer la résistance continue de la bobine du haut-parleur. Les multimètres utilisés en ohmètre ne sont généralement pas

FIGURE 3 – Implantation des composants

assez précis pour mesurer de faibles résistances. Il est préférable d'utiliser l'Arta Box en pont diviseur. On procède selon le schéma de la figure 4 en injectant une tension continue d'environ 5V (une pile de 4.5 V convient très bien).

On mesure dans un premier temps les tensions aux bornes des deux RCA left et right avec l'interrupteur en mode "calibration" afin de s'assurer que l'on obtient bien la même tension sur les deux canaux.

On place ensuite l'interrupteur en mode "mesure" et on relève à nouveaux les tensions.

Voici les valeurs obtenues sur mes haut-parleurs ALTEC 416-8A :

Réf	U_{right}	U_{left}
24851	0.794	0.1629
25427	0.794	0.1596

On déduit la résistance de la bobine mobile par la relation :

$$R_e = R_{cal} \frac{U_{left}}{U_{right} - U_{left}} \tag{1}$$

On obtient :

Réf	R_e
24851	$6.674 \ \Omega$
25427	$6.505 \ \Omega$

FIGURE 4 – Mesure de la résistance de la bobine

Il faut ensuite calculer le rayon effectif de la membrane. On peut utiliser pour cela la formule suivante : diamètre du cône plus 2/3 de la largeur de la suspension. On obtient pour l'ALTEC 416 un diamètre de 32.425 cm et une surface de 825.75 cm².

4 Branchements

L'interface audio TASCAM possède des prises RCA sur les lignes OUT et des prises Jack 6,35 mm symétriques (3 points) sur les lignes IN. Il faut réaliser des cordons RCA - Jack assymétrique pour la connection entre l'interface audio et l'Arta Box. On utilise pour cela des Jack 6,35 mm 2 points qui shuntent automatiquement le point froid et la masse passant ainsi d'une liaison symétrique à une liaison assymétrique (voir la figures 5).

FIGURE 5 – Jacks assymétrique et symétrique

Le schéma de connection des différents composants pour la mesure est donné figure 6.

Avant de mettre le système sous tension, on configure l'interface US-144 de la manière suivante :

• Volume MON MIX : maximum vers computeur;

FIGURE 6 – Branchements

- Volume PHONES : au minimum;
- Volume LINE OUT : au minium;
- Volume INPUT L et INPUT R : 75 % de l'échelle (curseur à 3 h);
- Interrupteur PHANTOM : off;
- Interrupteur guitare sur : MIC/LINE.

5 Configuration logicielle

On lance le logiciel LIMP que l'on configure avant d'effectuer les mesures à l'aide des menus "SetUp" et "Record".

5.1 Menu : setup/measurement

L'activation de ce menu a pour effet d'afficher la fenêtre de la figure 7. On configure alors les données de la manière suivante :

- reference channel : right;
- reference résistor : valeur de la résistance de calibration de l'Arta Box ;
- Frequency range : 5 hz à 10000 hz;
- Sampling rate : 44100 hz (largement suffisant vu le domaine de mesure) ;
- Frequency increment : 1/48 octave;
- Min. integration time (ms) : 200 (valeur par défaut);
- Transient time (ms) : 100 (valeur par défaut);
- Intra burst pause (ms) : 100 (valeur par défaut);
- Mute switch-off transient : coché (valeur par défaut).

Measurement Setup		
Measurement config	Stepped sine mode	FFT mode (pink noise excitation)
Reference channel Right ⊻	Frequency increment 1/48 octave	FFT size 32768
Reference Resistor 25,885	Min. integration time (ms) 200	Averaging None 🗸
Frequency range (Hz)	Transient time (ms) 100	Max averages 100
High cut-off	Intra burst pause (ms) 100	Asynchronous averaging
Low cut-off 5	Mute switch-off transients 🔽	
Sampling rate 44100 💌	Default	Cancel OK

FIGURE 7 – Menu setup/measurement

Les données configurant le FFT mode sont laissées telles quelles car ce mode n'est pas utilisé.

5.2 Menu : setup/audio devices

Ce menu fait apparaître la fenêtre de la figure 8.

Soundcard Setup		×
Soundcard driver	US-122 MKII / US-144 MKII	Control Panel
Input channels	1/2	Wave Format
Output channels	1/2	16-bit 💉
	Cancel	ОК

FIGURE 8 – Menu setup/measurement

On choisi l'interface audio US-144 et on configure :

- input chanel : 1/2;
- output chanel : 1/2.

On clique alors sur le bouton "Control Panel" pour afficher la fenêtre de contrôle de l'US-144 (voir la figure 9).

Il faut configurer les champs suivants :

- Audio performance : highest latency;
- Sample Clock Source : automatic;
- ch1 and ch2 : analog inputs;
- ch3 and ch4 : digital inputs;
- LINE OUTPUTS : ch1 and ch2;
- DIGITAL OUTPUTS : ch3 and ch4.

FIGURE 9 – Menu setup/measurement

5.3 Menu : setup/generator

Il faut à présent configurer le générateur de mesure :

Gen	erator	Setup	•						×
Ge	enerator ype	s	ine	~	Sine fre	eq. (Hz)	100	00	
o	utput le	vel -3	dB	~	Pink cut	t-off (H	z)	100	
Inp	ut level	monitor	•						
L	1	-70	1	-50	1	-30	1	-10	dB
			50		40		20		dB
R	-80	1 - 1 - 1	-60	1.1	-40	•	-20		

FIGURE 10 – Menu setup/measurement

On choisit le type Sinus et on place le Output level sur -3 dB pour éviter toute saturation.

Pour ajuster le volume, on place l'interrupteur de l'Arta Box en mode "calibration". On fixe la fréquence du générateur (Sine freq.), typiquement sur 500 hz. On clique sur le bouton test et on agit sur le bouton de volume LINE OUT de telle manière à ce que la tension aux bornes du HP mesurée avec un voltmètre atteigne la valeur désirée. On choisira comme tension la valeur moyenne correspondant au fonctionnement réel du haut-parleur. Dans le cas des ALTEC 416, j'ai pris un volt correspondant à 0.125 W sur 8 Ω . Il faut vérifier que cette tension ne conduit pas à de trop grand débattement du cône dans les basses fréquence (autour de 10 hz) pouvant conduire à endommager le haut-parleur.

On ajuste ensuite un des deux boutons INPUT L ou INPUT R pour avoir la même amplitude en entrée (curseur rouge alignés).

5.4 Menu : record/calibrate

Il faut enfin calibrer l'interface audio. L'activation de ce menu conduit à la fenêtre de la figure 11.

Calibrate Input Channels		
Generate Seq. length 32768 Sampling rate 44100 Output volume (dB) -3dB	Calibrate Connect left and right input channel to signal generator output ! Number of averages	Status Calibrated for: Seq.length: 32768 Fs: 44100 Hz Channel diff: 0, 10dB
Generate Input Level Monitor L 1 -50 R -60 1 -60	Calibrate	Uncalibrate Uncalibrate Cancel I dB OK

FIGURE 11 – Menu setup/measurement

L'interrupteur toujours en position "Calibration", on active le bouton "Calibrate". Le logiciel procède alors à la calibration et affiche l'écart mesuré (0.10 dB dans ce cas).

Le logiciel est alors prêt pour la mesure de l'impédance d'un haut-parleur.

6 Mesure de l'impédance

La mesure de l'impédance d'un haut-parleur s'effectue théoriquement en montant celui-ci sur le baffle de la figure 12 dont les dimensions sont données dans le tableau ci-dessous (convention IEC 268) :

Haut-Parleur	А	В	С	D
200 mm (8 in)	$1350 \mathrm{~mm}$	$1650 \mathrm{~mm}$	225 mm	$150 \mathrm{mm}$
250 mm (10 in)	$1690 \mathrm{mm}$	2065 mm	280 mm	190 mm
315 mm (12 in)	$2025 \mathrm{~mm}$	$2475 \mathrm{~mm}$	$340 \mathrm{~mm}$	225 mm
400 mm (15 in)	$2530 \mathrm{~mm}$	$3090 \mathrm{mm}$	420 mm	280 mm

Comme on peut le constater ce montage conduit à un panneau d'environ 3 m de hauteur pour des haut-parleurs de 38 cm de diamètre.

Ce montage est peu pratique et on préférera mesurer le haut-parleur sans baffle en le posant simplement sur un tabouret. Ceci a pour effet de modifier les paramètres de Thiele et Small car l'impédance de rayonnement (réduite à

FIGURE 12 – Dimensions baffle de mesure

la masse d'air qui vibre avec la membrane) diffère suivant le montage (voir la note [3] qui détaille le calcul de la masse de rayonnement). Nous verrons dans la section 8 comment se ramener à des paramètres sur écran infini à partir de ceux mesurés en champ libre.

Avant de procéder à la mesure, il faut adapter l'échelle du tracé. On clique sur le bouton "Set" situé à droite de la fenêtre de LIMP et on configure les données de la manière suivante :

- Impedance range : 0 200 Ω ;
- Freq. range : 5 10000 hz.

On injecte ensuite un signal de conditionnement au haut-parleur. On utilise pour cela un signal purement sinusoidal de très basse fréquence (10 hz par exemple) pendant 5 mn.

On s'assure ensuite que l'interrupteur de l'Arta Box est en position "Mesure" et on démarre la mesure avec le menu Record/Start. Le logiciel envoie alors au haut-parleur des fréquence pures et calcule pour chaque fréquence l'impédance (amplitude et phase) correspondante. Le tracé prend un peu de temps puisqu'il s'effectue fréquence par fréquence.

On obtient une fois la mesure terminée la courbe de la figure 13.

On sauvegarde la courbe d'impédance et on active le calcul des paramètres de Thiele et Small avec le menu Analyse/Loudspeaker parameters - Added mass method.

On saisi la résistance R_e de la bobine du haut-parleur précédemment mesuré et on clique sur le bouton "Calculate parameters".

FIGURE 13 – Mesure de l'impédance

On obtient alors les paramètres suivant :

Loudspeaker Parameters - Added	Mass Method
Loudspeaker parameters:	User Input
Fs = 24.03 Hz	Voice coil resistance Re (ohms) 6.674
Le = 556.66 uH L2 = 1322.72 uH	Membrane diameter (cm) 32.425
R2 = 16.89 ohms Qt = 0.26 Qes = 0.27	Added mass (g) 34
Qms = 5.08	Nonlinear LSE Optimization
Load overlay data, to calculate all parameters!	Estimate TSP by LSE minimization 🗹
·	Estimate voice coil resistance Re
	Estimate lossy inductor model
	Le +L2 R2
S	Calculate parameters Copy OK

FIGURE 14 – Paramètres de Thiele et Small

7 Calcul du V_{as}

La mesure de l'impédance seule du haut-parleur ne suffit pas pour calculer tous ses paramètres. Il faut procéder à une deuxième mesure en décalant la fréquence de résonance.

Il existe pour cela deux méthodes : la première consiste à alourdir la masse de l'équipage mobile en collant une masse additionnelle sur la membrane, la deuxième consiste à monter le haut-parleur dans une enceinte close de volume connu.

Pour obtenir une bonne précision du V_{as} , il est en théorie préférable d'effecteur plusieurs mesures car ces deux méthodes ne sont pas très précises et une seule mesure ne permet pas d'obtenir une précision meilleure que 5%.

Cependant la courbe de réponse d'une enceinte ne dépend pas de la valeur absolue du V_{as} mais du rapport $h = V_b/V_{as}$, V_b étant le volume de l'enceinte. Ce rapport h étant mesuré lors de la mise au point de l'enceinte, l'erreur de mesure du V_{as} est compensée en ajustant le volume V_b que l'on choisira initialement légèrement plus grand (voir la note [3]).

Le procédé de mesure du V_{as} décrit dans cette note utilise la méthode de la masse additionnelle. Il faut décaler la fréquence d'environ 20 % pour un résultat exploitable. Pour un haut parleur comme l'ALTEC 416, il faut ajouter approximativement 35 gr ce qui est obtenu à l'aide de quatre pièces de $2 \in$.

FIGURE 15 – Pièces constituant la masse additionnelle

Pour fixer les pièces on utilise un papier colle du genre "Patafix". On découpe des petits carrés que l'on place au centre des pièces de monnaie. On pèse l'ensemble des pièces au dixième de gramme près (voir figure 15).

On place alors les quatre pièces sur le cône du coté du saladier équirépartie en angle et proche du spider. Pour cela on appuie avec les mains des deux cotés de la membrane. Il faut appuyer légèrement. La figure 16 montre les pièces collés à la membrane.

Pour retirer les pièces, il ne faut surtout pas tirer perpendiculairement à la

FIGURE 16 – Haut-parleur pendant la mesure

membrane ce qui risquerait de l'endommager. On effectue des petits mouvement de rotation sans tirer jusqu'a que les pièces se détachent.

Pour s'assurer que le papier colle reste du coté de la pièce et non sur la membrane, on peut procéder à l'astuce suivante : avant de plaquer les pièces sur la membrane on pose une ou deux fois le pouce sur la colle. La graisse du doigt qui se dépose sur la colle rend celle-ci moins efficace et garantit que le papier colle ne reste pas sur la membrane du haut-parleur lorsque la pièce est détachée.

Il faut ensuite réaliser une nouvelle mesure de l'impédance du haut-parleur avec la masse additionnelle. Il est important que la mesure des deux courbes d'impédances (avec et sans masse additionnelle) soient réalisées dans les mêmes conditions de rayonnement.

Pour calculer les paramètres du haut-parleur il faut charger dans le logiciel les deux courbes d'impédance. On utilise pour cela le menu Overlay (voir la figure 17).

On peut alors calculer l'ensemble des paramètres de Thiele et Small à l'aide du menu Analyse/Loudspeaker parameters - Added mass method. On saisit dans le logiciel la valeur du rayon de la membrane, la valeur de la masse additionnelle et on clique sur le bouton "Calculate parameters". On obtient les résultats des figures 18 et 19.

FIGURE 17 – Les deux courbes de mesures

Ces résultats font apparaître une légère incohérence inexpliquée : la fréquence de résonance affichée (24.03 hz pour le haut-parleur 24851) diffère de celle calculée avec les valeurs de M_{ms} et C_{ms} (23.89 hz).

Loudspeaker Parameters - Added Mass Method				
Loudspeaker parameters:	User Input			
Fs = 24.03 Hz	Voice coil resistance Re (ohms) 6.674]		
Re = 6.67 ohms[dc] Le = 556.66 uH L2 = 1322.72 uH	Membrane diameter (cm) 32.425			
R2 = 16.89 ohms Qt = 0.26 Qes = 0.27	Added mass (g) 34]		
Qms = 5.08 Mms = 60.14 grams	Nonlinear LSE Optimization			
Rms = 1.777597 kg/s Cms = 0.000738 m/N	Estimate TSP by LSE minimization 🗸			
Vas = 706.87 liters Sd= 825.75 cm^2	Estimate voice coil resistance Re			
BI = 14.816690 Tm ETA = 3.38 %	Estimate lossy inductor model			
Lp(2.83V/1m) = 98.18 dB	Le + L2 R2			
Added Mass Method: Added mass = 34.00 grams				
Diameter = 32.42 cm	Calculate parameters Copy OK			

FIGURE 18 – Paramètres complets de Thiele et Small ALTEC Réf24851

Loudspeaker Parameters - Added Mass Method				
Loudspeaker parameters:	User Input			
Fs = 25.71 Hz	Voice coil resistance Re (ohms) 6.505			
Le = 581.73 uH L2 = 1530.44 uH	Membrane diameter (cm) 32.425			
R2 = 19.23 ohms Qt = 0.27 Qes = 0.29	Added mass (g) 34			
Qms = 5.39 Mms = 53.20 grams	Nonlinear LSE Optimization			
Rms = 1.594801 kg/s Cms = 0.000728 m/N	Estimate TSP by LSE minimization 🔽			
Vas = 697.39 liters Sd= 825.75 cm^2	Estimate voice coil resistance Re 🗌			
Bl = 13.906683 Tm ETA = 3.90 %	Estimate lossy inductor model			
Lp(2.83V/1m) = 98.91 dB	Le + L2 R2			
Added Mass Method: Added mass = 34.00 grams				
Diameter = 32.42 cm	Calculate parameters Copy OK			

FIGURE 19 – Paramètres complets de Thiele et Small ALTEC Réf 25427

8 Correction des paramètres

Les paramètres obtenus en plaçant le haut-parleur en champ libre diffèrent de ceux obtenus en plaçant le haut-parleur sur un écran infini du fait, comme nous l'avons vu, de la différence des impédances de rayonnement.

L'impédance de rayonnement se réduisant à une masse, le seul paramètre mécanique qui diffère est la masse totale de l'équipage mobile. On déduit que les paramètres de de Thiele et Small qui sont affectés sont : la fréquence de résonance F_s , les facteurs de qualités mécanique Q_{ms} , électrique Q_{es} et total Q_{ts} . Le V_{as} est inchangé puisqu'il ne dépend que de la raideur de la suspension.

Le tableur Excel < Correction Parametres TS.xls> permet de calculer les paramètres de Thiele et Small sur écran infini à partir de ceux mesurés en champ libre. Les données sont saisies dans les cases de couleurs bleues et les résultats apparaissent dans les cases de couleur jaunes (voir les figures 20 et 21).

Les valeurs de la masse volumique et de la vitesse du son doivent être celles utilisées par LIMP.

Du fait de la légère incohérence de LIMP entre la fréquence de résonance, la masse mobile et la raideur de la suspension, le calcul des nouveaux paramètres n'utilise pas la fréquence de résonance. Le calcul se base sur la masse mobile (notée ici M_{ms}^* , voir la note [3]), le volume d'air équivalent à la suspension et la resistance mécanique de perte.

On constate un écart non négligeable entre les paramètres de de Thiele et Small d'un même haut-parleur mesurés en champ libre ou sur un écran infini. La fréquence de résonance varie de 9.6 % et le facteur de qualité total de 11 %.

Constantes I	Physiques					
ρ	1,18	kg/m ³			Masse volumique de l'air	
Ċ	345.00	m/s			Vitesse de propagation des ondes acoustigues	
Paramètres r	nécaniques et é	ectriques				
D	32,4250	cm	0,324250	m	Diamètre du diaphragme	
Re	6,674	Ω			Résistance de la bobine mobile	
BI	14,81669	T.m			Facteur de couplage électro-mécanique	
Vas	706,87	litres	0,706870	m³	Volume d'air de même compliance que la suspension	
M*ms	60,14	gr	0,060140	kg	Masse du système mobile avec la masse de rayonnement	
Rms	1,777597	N.s/m			Résistance mécanique de perte	
Masse de ray	onnement lors	de la mesu	re			
k	1				k=1 : HP mesuré en champs libre	
					k=2 : HP mesuré sur écran infini	
Paramètres o	de Thiele/Small	mesurés				
а	0,16213	m			Rayon du diaphragme	
Sd	825,752	cm ²	0,082575	m²	Surface projeté du diaphragme	
Fs	23,89	hz			Fréquence de résonnance du haut-parleur	
Cms	7,3811	mm/daN	0,00073811	m/N	Compliance mécanique de la suspension	
Qms	5,078				Facteur de qualité mécanique	
Qes	0,274				Facteur de qualité électrique	
Qts	0,260				Facteur de qualité total	
Mr	13,41	gr	0,01341	kg	Masse de l'air entrainé	
Mms	46,73	gr	0,04673	kg	Masse du système mobile sans masse de rayonnement	
Masse de ray	onnement pou	r le recalcul				
k	2				k=1 : HP en champs libre k=2 : HP sur écran infini	
Paramètres o	de Thiele et Sma	all corrigés				
Mr	26,82	gr	0,026818	kg	Masse de l'air entrainé	
M*ms	73,55	gr	0,073549	kg	Masse du système mobile avec la masse de rayonnement	
Fs	21,60	hz			Fréquence de résonnance du haut-parleur	
Qms	5,616				Facteur de qualité mécanique	
Qes	0,303				Facteur de qualité électrique	
Qts	0,288				Facteur de qualité total	

FIGURE 20 – Paramètres de Thiele et Small corrigés ALTEC Réf24851

coo parame				000, 10			
Constantes	Physiques						
p	1.18	ka/m ³			Masse volumique de l'air		
c	345.00	m/s			Vitesse de propagation des ondes acoustigues		
Paramètres	s mécaniques et é	electriques					
D	32,4250	cm	0,324250	m	Diamètre du diaphragme		
Re	6,505	Ω			Résistance de la bobine mobile		
BI	13,90668	T.m			Facteur de couplage électro-mécanique		
Vas	697,39	litres	0,697390	m³	Volume d'air de même compliance que la suspension		
M*ms	53,20	gr	0,053200	kg	Masse du système mobile avec la masse de rayonnement		
Rms	1,594801	N.s/m			Résistance mécanique de perte		
Masse de r	ayonnement lors	de la mesur	e				
k	1				k=1 : HP mesuré en champs libre		
					k=2 : HP mesuré sur écran infini		
Paramètres	de Thiele/Small	mesurés					
а	0,16213	m			Rayon du diaphragme		
Sd	825,752	cm ²	0,082575	m ²	Surface projeté du diaphragme		
Fs	25,57	hz			Fréquence de résonnance du haut-parleur		
Cms	7,2821	mm/daN	0,00072821	m/N	Compliance mécanique de la suspension		
Qms	5,359				Facteur de qualité mécanique		
Qes	0,287				Facteur de qualité électrique		
Qts	0,273				Facteur de qualité total		
Mr	13,41	gr	0,01341	kg	Masse de l'air entrainé		
Mms	39,79	gr	0,03979	kg	Masse du système mobile sans masse de rayonnement		
Masse de r	avonnement pour	r le recalcul					
k	2				k=1 : HP en champs libre		
	-				k=2 : HP sur écran infini		
Paramètres	de Thiele et Sma	all corrigés					
Mr	26.82	gr	0,026818	kg	Masse de l'air entrainé		
M*ms	66,61	gr	0,066609	kg	Masse du système mobile avec la masse de rayonnement		
Fs	22.85	hz		-	Fréquence de résonnance du haut-parleur		
Qms	5,997				Facteur de gualité mécanique		
Qes	0.322				Facteur de qualité électrique		
Ots	0.305				Eacteur de qualité total		

FIGURE 21 – Paramètres de Thiele et Small corrigés ALTEC Réf25427

Il est préférable de prendre les paramètres de Thiele et Small obtenus à partir d'un montage sur un écran infini pour concevoir une enceinte acoustique car la masse de rayonnement est plus proche de celle du haut-parleur quand celui-ci est placé dans l'enceinte.

La note [3] montre comment déterminer précisément la masse de rayonnement du haut-parleur dans l'enceinte à partir de la mesure de la courbe d'impédance.

8.1 Précisions des mesures

Plusieurs mesures successives du même haut-parleur ne donnent pas toujours le même résultat. Les paramètres qui varient le plus sont la compliance de la suspension C_{ms} et les pertes par frottements R_{ms} . Pour obtenir les mêmes résultats il faut prendre quelques précautions.

Il importe d'abord de ne pas comparer des mesures ayant des niveaux d'excitations différents. En effet les paramètres dépendent sensiblement du niveau de la tension d'entrée et il est alors normal de trouver des valeurs différentes.

Il est ensuite préférable de ne jamais mesurer un haut-parleur à froid et d'envoyer au préalable un signal de conditionnement. Le niveau d'excitation de ce signal doit être tel que le déplacement du cone soit significatif (1 ou 2 mm).

Il importe de remarquer que l'ajout d'une masse sur la membrane modifiant la compliance de la suspension, il faut quelques heures au haut-parleur pour que cette compliance revienne à sa valeur initiale. Il faut donc impérativement procéder aux mesures dans cet ordre : mesure sans masse additionnelle puis mesure avec masse additionnelle.

De manière générale, on s'aperçoit q'un fonctionnement continue du hautparleurs conduit à assouplir la suspension (le paramètre C_{ms} diminue). Il en est de même des pertes par frottement (diminution de R_{ms}).

Heureusement les paramètres C_{ms} et R_{ms} ont peu d'influence sur les caractéristiques d'une enceinte. En effet, le rendement d'un haut-parleur s'écrit :

$$\eta_s = \frac{\rho S_d^2}{2\pi c R_e} (\frac{Bl}{M_{ms}})^2 \tag{2}$$

Il est indépendant de Cms et R_{ms} . Prenons les formules de Synder (voir note [4]) pour le calcul d'une enceinte Bass-Reflex. Nous avons :

$$V_b = n V_{as} Q_{ts}^2 \tag{3}$$

$$\omega_b = 0.39 \frac{\omega_s}{Q_{ts}} \tag{4}$$

$$\omega_3 = \frac{1}{\sqrt{n}} \frac{\omega_s}{Q_{ts}} \tag{5}$$

Le paramètre R_{ms} n'intervient que dans le calcul de Q_{ms} . Ce paramètre étant toujours plus élevé que Q_{es} , on peut en première approximation remplacer Q_{ts} par Q_{es} . On en déduit donc que les formules de Synder sont peu dépendantes du paramètre R_{ms} . En revenant au paramètres mécaniques, on obtient :

$$V_{as}Q_{es}^2 = \rho c^2 S_d^2 R_e^2 \frac{M_{ms}}{(Bl)^4}$$
(6)

$$\frac{\omega_s}{Q_{es}} = \frac{(Bl)^2}{M_{ms}R_e} \tag{7}$$

Ces deux équations sont indépendantes de C_{ms} . Pour résumé, le rendement est indépendant de C_{ms} , R_{ms} et le volume de l'enceinte, la fréquence d'accord de l'évent et la fréquence de coupure en dépendent peu et ce d'autant moins que Q_{ms} est plus important que Q_{es} .

8.2 Mesures de haut-parleurs à chambre de compression

Si la mesure de haut-parleurs à rayonnement direct risque peu de les endommager, il en est autrement avec des moteurs à chambre de compression qui ne tolèrent pas d'être excités beaucoup plus bas que leur fréquence de résonance. Afin de les protéger il est impératif de brancher un condensateur en série pour réaliser un filtre passe-haut du premier ordre. La valeur du condensateur se calcule en fonction de la fréquence de coupure f_c selon la formule :

$$C = \frac{1}{2\pi f_c R} \tag{8}$$

R est la résistance du haut-parleur (8 ou 16 Ω). Pour les moteurs medium on pourra prendre comme fréquence de coupure 200 hz et pour les aiguës 5000 hz. On obtient alors les valeurs suivantes pour les condensateurs :

Type	$8 \ \Omega$	$16 \ \Omega$
Medium	$100 \ \mu F$	$50 \ \mu F$
Aiguës	$4 \ \mu F$	$2~\mu { m F}$

Lors du balayage en fréquence on veillera à ne pas commencer beaucoup plus bas que la fréquence de résonance du moteur. Avant de lancer l'enregistrement il est bon de prendre le réflexe de toujours regarder la barre de menu de LIMP qui affiche la plage de balayage.

Enfin il vaut mieux débrancher un haut-parleur à compression quand on calibre la carte son car le spectre du signal utilisé est assez large.

8.3 Fichiers de mesures

Les fichiers de mesures des haut-parleurs ALTEC au format LIMP (extension .lim) peuvent être téléchargés à partir des liens suivant : <*Altec 416 8A 24851.lim>*, <*Altec 416 8A 24851 dm.lim>*,<*Altec 416 8A 25427.lim>*, <*Altec 416 8A 25427 dm.lim>*.

Les fichiers contenant dm dans le nom correspondent à la mesure avec la masse additionnelle de 34.0 gr.

Références

- [1] Logiciel ARTA : http://www.artalabs.hr
- [2] Interface audio TASCAM US-144 : http://www.tascam.eu/fr/ us-144mkii.html
- [3] Jean Fourcade : Utilitaires Scilab pour le calcul et l'optimisation d'enceintes acoustiques : <*SciAudioBox.pdf>*
- [4] Patrick J. Snyder, Simple Formula and Graphs for Design of Vented Loudspeaker systems. 58th Convention AES